Kamis, 07 November 2013

Pengolahan Citra & Grafik Komputer

 sebuah garis mulai dari titik awal (10,10) sampai titik akhir (17,16) dengan menggunakan algoritma DDA dan Bresenham

Titik Awal = A(10,10)
Titik Akhir = B(17,16)
Dx = (X1-X0) (17-10) = 7
Dy = (Y1-Y0) (16-10) = 6
Abs(Dx) = Abs(7) = 7
Abs(Dy) = Abs(6) = 6
Abs(Dx) > Abs(Dy) maka
Step = Abs(Dx) = 7
Xincrement = Dx / Steps. 7 / 7 = 1
Yincrement = Dy / Steps. 6 / 7 = 0,86

Tabel 3.1. Nilai perhitungan

K
X
Y
Xinc
Yinc
-
-
-
10
10
0
11
10,86
11
11
1
12
11,71
12
12
2
13
12,57
13
13
3
14
13,43
14
14
4
15
14,28
15
15
5
16
15,14
16
16
6
17
16
17
16

·         BRESSENHAM

Tujuan dari algoritma Bressenham ini adalah untuk menghindari pembulatan nilai seperti pada algoritma DDA.
1. Tentukan dua titik yang akan dihubungkan dalam pembentukan garis.
2. Tentukan salah satu titik di sebelah kiri sebagai titi awal, yaitu (x0,y0) dan titik lainnya sebgai titik akhir (x1,y1).
3. Hitung dx,dy,2dx dan 2dy-2dx.
4. Hitung parameter P0 = 2dy-dx
5. Untuk setiap Xk sepanjang jalur garis, dimulai dengan k=0,bila pk <0, maka titik selanjutnya adalah (xk+1, yk), dan Pk+1 = Pk+2dybila tidak, maka titik selanjutnya adalah (xk+1,yk+1), dan Pk+1 = Pk+2dy-2dx
6. Ulangi langkah no 5 untuk menentukan posisi pixel selanjutnya, sampai x = x1 dan y = y1.
Sub Rutim Berssenham dalam CVoid line (int xa, ya, xb, yb, xEnd; flot x,y)
{
Int dx = abs(xb-xa), dy=abs(yb-ya);
Int p = 2*dy-dx;
Int twoDy = 2*dy,
twodyDx = 2*(dy-dx);
If (xa>xb)
{
X = xb;
Y = yb;
Xend = xa;
}
Else
{
X = xa;
Y = ya;
xEnd = xb;
}
SetPixel(x,y);
While (x<xEnd)
{
X++;
If (p<0)
P+ = twody;
Else
{
Y++;
P+ = twoDyDx;
}
SetPixel(x,y);
}
};

JAWAB
dx = abs(xb xa)= abs(17 10 ) = 7
dy = abs(yb ya)= abs(16 10) = 6
p = 2 * dy - dx = 2 * 6 7 = 5
twody = 2 * dy = 2 * 6 = 12
twodydx= 2 * (dy dx ) = 2 * ( 6 7 ) = -2
Periksa xa dan xb
xa = 10 < xb = 17Maka
x = xa = 10
y = ya = 10
Xend = xa = 17
Ulangi selama x < xend
K0: x = x + 1 = 10 + 1 = 11
Periksa nilai p , dimana p = 5
y = y + 1 = 10 + 1 = 11
p = p + twodydx = 5 + (-2) = 3
K1: x = x + 1 = 11 + 1 = 12
Periksa nilai p, dimana p = 3
y = y +1 = 11 + 1 = 12
p = p + twodydx = 3 + (-2) = 1
K2: x = x + 1 = 12 + 1 = 13
Periksa nilai p, dimana p = 1
y = y +1 = 12 + 1 = 13
p = p + twodydx = 1 + (-2) = -1
K3: x = x + 1 = 13 + 1 = 14
Periksa nilai p, dimana p = -1 Nilai y tetap yaitu y=13
p = p + twody = (-1) + 12 = 11
K4: x = x + 1 = 14 + 1 = 15
Periksa nilai p, dimana p = 11
y = y +1 = 13 + 1 = 14
p = p + twodydx = 11 + (-2) = 9
K5: x = x + 1 = 15 + 1 = 16
Periksa nilai p, dimana p = 9
y = y +1 = 14 + 1 = 15
p = p + twodydx = 9 + (-2) = 7
K6: x = x + 1 = 16 + 1 = 17
Periksa nilai p, dimana p = 7 y = y +1 = 15 + 1 = 16
p = p + twodydx = 7 + (-2) = 5
Proses berhenti karena x = x1 dan y = y1
Masukkan nilai kedalam tabel, seperti pada tabel 3.2.Tabel 3.2.
Hasil penelusuran dengan bressenham
K
Pk
(Xk+1, Yk+1)
-
-
10,10
0
3
11,11
1
1
12,12
2
-1
13,13
3
11
14,13
4
9
15,14
5
7
16,15
6
5
17,16




Tidak ada komentar:

Posting Komentar